Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Indexado em
  • Índice Copérnico
  • Google Scholar
  • Sherpa Romeu
  • Abra o portão J
  • Genâmica JournalSeek
  • Chaves Acadêmicas
  • Biblioteca de Periódicos Eletrônicos
  • RefSeek
  • Universidade Hamdard
  • EBSCO AZ
  • OCLC – WorldCat
  • Catálogo online SWB
  • Biblioteca Virtual de Biologia (vifabio)
  • Publons
  • Euro Pub
Compartilhe esta página

Abstrato

Adaptive Comfort Model Incorporating Temperature Gradient for a UK Residential Building

Samsuddin S, Durrani F and Eftekhari M

Thermal comfort field experiments were conducted to acquire thermal comfort data of 119 participants in a test house representative of a typical UK house. This paper compares the performance of popular PMV-based thermal comfort index vs neutral temperature based on Actual Mean Vote. The aim of this research was to incorporate vertical thermal gradient, which is usually a neglected yet highly influential parameter in a residential setting and propose a new adaptive thermal comfort model. The new adaptive model (LPMV) has been developed using a polynomial curve fit method. This method was chosen as it has the capability to correlate indoor environmental parameters with AMV and incorporated them in the generated mathematical model. The model requires temperature gradient and SET* only to determine neutral temperatures which makes it the first of its kind. The LMPV model was rigorously tested against thermal comfort data compiled in this study and against independent/unbiased data (the ASHRAE RP-884 database). LPMV showed up to 0.7°C improvement in predicting neutral temperature of occupants compared to the famous Fanger’s PMV model. This can result in better prediction of a suitable heating setpoint temperature which has great implications on annual energy demand.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado.