Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Indexado em
  • Índice Copérnico
  • Google Scholar
  • Sherpa Romeu
  • Abra o portão J
  • Genâmica JournalSeek
  • Chaves Acadêmicas
  • Biblioteca de Periódicos Eletrônicos
  • RefSeek
  • Universidade Hamdard
  • EBSCO AZ
  • OCLC – WorldCat
  • Catálogo online SWB
  • Biblioteca Virtual de Biologia (vifabio)
  • Publons
  • Euro Pub
Compartilhe esta página

Abstrato

An Examination of Physics-based Machine Learning in Civil Engineering

Michael Baxter

The potential are expanding across all industries thanks to the recent advancements in machine learning (ML) and deep learning (DL). Although ML is a useful tool that may be used in many different fields, it can be difficult to directly apply it to civil engineering issues. Lab-simulated ML for civil engineering applications frequently fails in real-world assessments. This is typically linked to a phenomenon known as data shift, which occurs when the data used to train and test the ML model differ from the data it meets in the real world. To address data shift issues, a physics-based ML model integrates data, partial differential equations (PDEs), and mathematical models. In order to accomplish supervised learning problems while adhering to any given laws, physics-based ML models are trained. Physics-based Fluid dynamics, quantum physics, computational resources, and data storage are among the many scientific fields where machine learning (ML) is taking centre stage. This essay examines the development of physics-based machine learning and its use in civil engineering.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado.