Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Abstrato

Analysis of Nursing Safety Incident Characteristics Using Deep LearningBased Medical Data Association Rules Method in ENT Surgery

David Kohrman

Otolaryngology is a fairly current condition, and complications including infection and significant bleeding constantly be during surgery, which pose a serious threat to the cases' mortality. Exploring the distinctive characteristics of postoperative nursing safety events in cases who have experienced otolaryngology surgery and comprehending the distinctive features of postoperative nursing safety events in otolaryngology surgery cases are of utmost significance frequentness of postoperative safety nursing incidents were linked by this study's preoperative safety protection for 385 convalescents. According to this study, the main factors impacting postoperative care are erected lesions (95.0 C19.365 –21.038), the treatment period (95.0 CI7.147 –20.275), during hospitalization (95.0 CI8.918 –24.237), antibiotic use (95.0 CI8.163-21.739), and hypertension (95.0 CI7.926-22.385). Using the association rule system to assay and control the major threat

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado.