ISSN: 2332-0877

Jornal de doenças infecciosas e terapia

Acesso livre

Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Abstrato

Application of a Protease Inhibitor for the Treatment of Viral Respiratory Infections: Acceptable Concentrations of the Protease Inhibitor Nafamostat and Ammonium Chloride for Direct Administration to the Respiratory Epithelium of Mice

Satoko Nakagomi

Back ground: Enveloped viruses invade cells by fusing the viral envelope with the cell membrane. Most viral fusion proteins require specific host protease(s) to activate their fusion activity. Many influenza viruses and severe acute respiratory syndrome associated coronaviruses use transmembrane serine protease TMPRSS2 for activation. Protease inhibitor nafamostat suppresses TMPRSS2, thereby interfering with the viral infection in-vitro. However, no successful application of nafamostat for the treatment of respiratory viral infection has been reported. This is because no method has been established to deliver nafamostat to the respiratory epithelium. Additionally, many coronaviruses have another infectious pathway, in which the virus is engulfed in endosome and activated by endosomal protease(s) and acidification. Ammonium chloride is known to block this pathway in-vitro , by interfering with the endosomal acidification. The present study has done to explore the method to safely deliver these reagents by assessing whether adverse effects occur when the reagents are administered to the respiratory epithelium in mice.

Methods: To ass ess adverse effects, inbred mice were intranasally administered the reagents 2~20 μL/day for a week under anesthesia. Mice were daily observed and change in the body weight was used as a health status barometer. At the end of experiment, the serum biochemical examination was done.

Results: The solution of 200 μM nafamostat and 74 mM ammonium chloride could be intranasally administered 20 μL/day for 1 week to adult C57BL/6 mice without any visible adverse effects. Biochemical data on these mice were within the normal range.

Conclusion: Since 1 μM nafamostat and 50 mM ammonium chloride are known to efficiently suppress the viral invasion to cell in-vitro, nafamostat is highly expected to show inhibitory effect in the virus-infected mice, and ammonium chloride may be also available to treat the virus-infected mice. The present study encourages future researches in infected mice and to apply these reagents for the clinical treatment.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado.