ISSN: 2157-7617

Jornal de Ciências da Terra e Mudanças Climáticas

Acesso livre

Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Indexado em
  • Índice de Fonte CAS (CASSI)
  • Índice Copérnico
  • Google Scholar
  • Sherpa Romeu
  • Acesso Online à Pesquisa no Meio Ambiente (OARE)
  • Abra o portão J
  • Genâmica JournalSeek
  • JornalTOCs
  • Diretório de Periódicos de Ulrich
  • Acesso à Pesquisa Online Global em Agricultura (AGORA)
  • Centro Internacional de Agricultura e Biociências (CABI)
  • RefSeek
  • Universidade Hamdard
  • EBSCO AZ
  • OCLC – WorldCat
  • Convocação de Proquest
  • Catálogo online SWB
  • Publons
  • Euro Pub
  • ICMJE
Compartilhe esta página

Abstrato

Application of Artificial Neural Network for Groundwater Level Simulation in Amritsar and Gurdaspur Districts of Punjab, India

Lohani AK and Krishan G

In this paper, the most stable and efficient neural network configuration for predicting groundwater level in Amritsar and Gurdaspur districts of Punjab, India is identified. For predicting the model efficiency and accuracy, different types of network architectures and training algorithms are investigated and compared. It has been found that accurate predictions can be achieved with a standard feed forward neural network trained with the Levenberg–Marquardt algorithm providing the best results. Good estimation of groundwater level can be achieved by dividing the boreholes/observation wells into different groups of data and designing distinct networks which is validated by the ANN technique and the degree of accuracy of the ANN model in groundwater level forecasting is within acceptable limits. The ANN method has been found to forecast groundwater level in Amritsar and Gurdaspur districts of Punjab, India.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado.