Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.
Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores
Victor M. Ibeanusi, Erin Jackson, Juandalyne Coffen and Yassin Jeilani
In this study, an Artificial Neural Network (ANN) was developed as a predictive tool for identifying optimal remediation conditions for groundwater contaminants that include selected metals found at coal mining sites. The ANN was developed from a previous field data obtained from a bioremediation project at an abandoned mine at Cane Creek in Alabama, and from a coal pile run off at a Department of Energy’s site in Aiken, South Carolina. The evaluative parameters included pH, redox, nutrients, bacterial strain (MRS-1), and type of microbial growth process (aerobic, anaerobic or sequential aerobic-anaerobic conditions). Using the conditions predicted by the Neural Networks, significant levels of As, Pb, and Se were precipitated and removed over eight days in remediation assays containing 10 mg/L of each metal in cultures that include MRS-1. The results showed 85%, 100%, and 87% reductions of As, Pb, and Se, respectively. The results from these ANN- driven assays are significant. It provides a roadmap for reducing the technical risks and uncertainties in clean-up programs. Continuous success in these efforts will require a strong and responsive research that provides a decision support system for long-term restoration efforts.