Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.
Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores
Yikun Liu
Breast cancer is a prevalent and potentially life-threatening disease affecting women globally. Early and accurate detection of breast lesions through medical imaging, such as ultrasound, is crucial for effective treatment. In this study, we propose a novel approach for the classification of breast ultrasound images using a fuzzy-rank ensemble network. The proposed ensemble network combines the strengths of fuzzy logic and rank-based techniques to enhance the robustness and accuracy of classification. The network leverages fuzzy membership functions to capture the uncertainty inherent in ultrasound image interpretation, while the rank-based ensemble method aggregates predictions from multiple classifiers to improve overall performance. Experimental results on a comprehensive dataset demonstrate that the proposed fuzzy-rank ensemble network achieves superior classification performance compared to individual classifiers and traditional ensemble methods. This approach holds promise for improving the diagnostic capabilities of breast ultrasound image analysis, ultimately aiding clinicians in making more informed decisions and potentially contributing to enhanced patient outcomes.