Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.
Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores
Satyam Merja, Ryan H. Lilien and Hilary F. Ryder
Abstract Background: Physicians and patients frequently overestimate likelihood of survival after in-hospital cardiopulmonary resuscitation (CPR). Discussions and decisions around resuscitation after in-hospital cardiopulmonary arrest often take place without adequate or accurate information. Methods: We conducted a retrospective chart review of 470 instances of resuscitation after in-hospital cardiopulmonary arrest. Individuals were randomly assigned to a derivation cohort and a validation cohort. Logistic Regression and Linear Discriminant Analysis were used to perform multivariate analysis of the data. The resultant best performing rule was converted to a weighted integer tool and thresholds of survival and non-survival were determined with an attempt to optimize sensitivity and specificity for survival. Results: A 10-feature rule, using thresholds for survival and non-survival, was created; the sensitivity of the rule on the validation cohort was 42.7%, and specificity was 82.4%. Conclusions: Utilizing information easily obtainable on admission, our clinical prediction tool, the Dartmouth Score, provides physicians individualized information about their patients’ probability of survival after in-hospital cardiopulmonary arrest. The Dartmouth Score may become a useful addition to medical expertise and clinical judgment in evaluating and communicating an individual’s probability of survival after in-hospital cardiopulmonary arrest after it is validated by other cohorts. Methodologically, because LDA outperformed LR in the creation of this clinical prediction rule, it may be an approach for others to more frequently consider when performing similar analysis.