ISSN: 2278-0238

Revista Internacional de Pesquisa e Desenvolvimento em Farmácia e Ciências da Vida

Acesso livre

Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Abstrato

Cytotoxicity and Larvicidal Activity for Biosynthesized Acetaminophen Silver Nanoparticles (AgNPs) to Control Vector Viral Disease

King Solomon Ebenezer

Acetaminophen a non-steroidal and anti-inflammatory drug, mostly used as an analgesic and antipyretic drug. Recently, lot of misconceptions was raised about the drug mechanism/toxicity so in order to overcome and to increase the efficacy the advance nanotechnology was employed. In this study, synthesis of silver nanoparticles (AgNPs) through Acetaminophen drug and determine its antibacterial, larvicidal and cytotoxicity activity. The synthesized silver nanoparticles were characterized and UV-Vis showed broad peak at 430 nm. The Fourier transform infrared spectroscopy revealed the presence of functional groups with NPs over the metals and scanning Electron microscopy showed the sized nanoparticles ranging from1µm–20µm for synthesized AgNPs. The zeta potential (negative) prospective values of NPs metal specified the stability of synthesized particles. Minimal inhibitory concentration against bacteria and larvicidal activity for fourth instar larvae Aedes aegypti was assessed for synthesized AgNPs and showed consistent activity. The cytotoxicity assay revealed that no signs of decreased MTT formation in vero cells at the highest concentration of 1000ng. Hence, synthesized AgNPs Acetaminophen has a potential activity against the mosquitoes and antiviral properties against the viral disease. This combination is a preliminary approach and further research studies in progress for the development of drug for vector control disease.