Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Indexado em
  • Índice Copérnico
  • Google Scholar
  • Sherpa Romeu
  • Abra o portão J
  • Genâmica JournalSeek
  • Chaves Acadêmicas
  • PesquisaBíblia
  • Infraestrutura Nacional de Conhecimento da China (CNKI)
  • Acesso à Pesquisa Online Global em Agricultura (AGORA)
  • Biblioteca de Periódicos Eletrônicos
  • RefSeek
  • Universidade Hamdard
  • EBSCO AZ
  • OCLC – WorldCat
  • Catálogo online SWB
  • Biblioteca Virtual de Biologia (vifabio)
  • Publons
  • Fundação de Genebra para Educação e Pesquisa Médica
  • Euro Pub
  • ICMJE
Compartilhe esta página

Abstrato

De novo Exocarp Transcriptome Assembly of the Organ Pipe Cactus Stenocereusthurberi Fruit: A First Glance

Tiznado-Hernández

Mexico is one of the most important producers and exporters of fruits and vegetables of the world. This activity brings important revenues for the country. In this context, the postharvest fruit losses reduce the economic benefit of the country. These losses are in part due toseveral abiotic stresses present during the postharvest shelf life. Several experimental evidences strongly suggest that the cuticle plays a role in the length of the  postharvest shelf life of fruits. Nevertheless, the cuticle responses to abiotic stresses such as hydric stress, high temperatures and osmotic stress is still largely unknown. Because of that, the elucidation of the molecular mechanism of cuticle biosynthesis will allow the development of strategies to design fruit with a large postharvest shelf life and more resistant to abiotic stresses.  Cactus species are adapted to environments with high temperatures, high solar irradiation, and low water availability which suggests that most likely cactus species cuticle have special characteristics. According to the above, the objective of the present work was to analyze the exocarp transcriptome of organ pipe cactus Stenocereusthurberi fruit generated by a next generation sequencing approach.S. thurberi fruits are known as pitayas. Pitaya fruit with different stages of development were collected in a Sonora desert region located close to Carbo, Sonora, México. Total RNA was isolated from the exocarp and four libraries were sequenced in paired-end mode2x150 using theNextSeq 500 Iluminaplatform. A total of288,199,704 short reads were obtained, which correspond to 21.95 Gbof information. Fast QC software was used for quality analysis.