ISSN: 2168-9806

Jornal de Metalurgia do Pó e Mineração

Acesso livre

Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Abstrato

Effects of the Amount of Poly (Vinylpyrrolidone) on the Characteristics of Silver Nanoparticles Produced Using a Modified Thermal Treatment Method

Relisa Fibshah

By using a modified thermal treatment process with successive flows of oxygen and nitrogen, very small and pure silver nanoparticles were produced. By using various methods, the structural and optical characteristics of the calcined silver nanoparticles at 600 °C with various Poly (vinylpyrrolidone) concentrations ranging from 2% to 4% were investigated. At a specific concentration of Poly (vinylpyrrolidone), the formation of pure Ag nanoparticles was seen using Fourier transform infrared spectroscopy. The X-ray powder diffraction spectra show that for all concentrations of poly (vinylpyrrolidone), the amorphous sample at 30 °C changed into cubic crystalline nanostructures at the calcination temperatures [1]. By increasing the quantities of Poly (vinylpyrrolidone), from 4.61 nm at 2% to 2.49 nm at 4%, spherical silver nanoparticles with smaller average particle sizes were produced, as seen in transmission electron microscopy images (vinylpyrrolidone). The conduction band of Ag nanoparticles increased with increasing Poly (vinylpyrrolidone) concentrations, from 2.83 eV at 2% Poly (vinylpyrrolidone) to 2.94 eV at 4% Poly(vinylpyrrolidone), due to decreasing particle size. The optical properties were investigated using a UV-vis absorption spectrophotometer. Due to the smaller particle size, which corresponded to fewer atoms making up the metal nanoparticles, there was less attraction between conduction electrons and metal ions.