Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Abstrato

Endocrine Disruption: confronting the most important sustainability challenge to ever engulf chemistry

Terrence J. Collins

Until recent times, chemical processes and products were commercialized solely on the strength of high technical and cost performances. Today we recognize the sustainability requires that health, environment and fairness performances also be integrated into the value proposition of chemical products and processes. The foundational purpose of any field of chemistry that proposes to make the chemical enterprise sustainable must surely be, first and foremost. to protect the plenitude of life from the downsides of commercial chemicals. Such a purpose is more important in its field distinguishing qualities than advancing society by adding to the upsides of chemical commerce through the invention of less hazardous products and processes. Today, the collective chemical enterprise represents an existential threat to the sustainability of our civilization that chemists little understand. This threat is arguably even faster acting than climate change and originates primarily (to the best of our understanding) in the endocrine disrupting properties of many chemicals, including some everydayeverywhere chemicals. In this presentation, I will (i) cover facts that identify endocrine disruption as an existential threat to life on earth (ii) show how endocrine disruptors can be identified experimentally, and (iii) touch on the iterative design process that we have used in the Institute for Green Science that I direct to develop TAML and NewTAML catalysts to destroy endocrine disruptors in water. The technical performance of NewTAMLs is unprecedented across both chemistry and biology and has given birth to the new field of Sustainable Ultradilute Oxidation Catalysis (SUDOC).