ISSN: 2155-9872

Jornal de Técnicas Analíticas e Bioanalíticas

Acesso livre

Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Indexado em
  • Índice de Fonte CAS (CASSI)
  • Índice Copérnico
  • Google Scholar
  • Sherpa Romeu
  • Banco de dados de revistas acadêmicas
  • Abra o portão J
  • Genâmica JournalSeek
  • JornalTOCs
  • PesquisaBíblia
  • Infraestrutura Nacional de Conhecimento da China (CNKI)
  • Diretório de Periódicos de Ulrich
  • Biblioteca de Periódicos Eletrônicos
  • RefSeek
  • Diretório de indexação de periódicos de pesquisa (DRJI)
  • Universidade Hamdard
  • EBSCO AZ
  • OCLC – WorldCat
  • Acadêmico
  • Catálogo online SWB
  • Biblioteca Virtual de Biologia (vifabio)
  • Publons
  • Euro Pub
  • ICMJE
Compartilhe esta página

Abstrato

Engineering Methylotrophic Yeasts for Biotechnology Applications

Dr. Hann Clara

Background: Because some yeast has evolved a methylotrophic lifestyle, they can use the single-carbon molecule methanol as a source of carbon and energy. Pichia pastoris (also known as Komagataella sp.) is one of them and is commonly employed for the generation of heterologous proteins as well as a model organism for organelle research. Our present understanding of the methylotrophic lifestyle is primarily based on extensive biochemical investigations that discovered numerous important methanol utilisation enzymes and their localization to the peroxisomes, including alcohol oxidase and dihydroxyacetone synthase. The pentose phosphate pathway is thought to be involved in C1 assimilation, but the specifics of these events are not yet understood.

Results: In this study, we compared the development of P. pastoris on a medium containing equal amounts of methanol and glycerol and glucose, as well as the regulation patterns of 5,354 genes, 575 proteins, 141 metabolites, and fluxes through 39 processes. We discovered that the whole methanol absorption mechanism is restricted to peroxisomes as opposed to using a portion of the cytosolic pentose phosphate pathway for xylulose-5-phosphate regeneration, as was previously thought. P. pastoris (and perhaps other methylotrophic yeasts) have developed a duplicated set of methanol-inducible enzymes that are specific to peroxisomes for this purpose. Sedoheptulose-1,7- bisphosphate is used as an intermediary in this compartmentalised cyclic C1 assimilation mechanism known as the xylose-monophosphate cycle. The high demand for their respective cofactors, riboflavin, thiamine, nicotinamide, and heme, caused by the strong induction of alcohol oxidase, dihydroxyacetone synthase, formaldehyde and formate dehydrogenase, and catalase, is reflected in the strong up-regulation of the corresponding synthesis pathways on methanol. Because of the high outflow towards methanol metabolic enzymes and their cofactors, methanol-grown cells contain more protein but fewer free amino acids. This illustrates an enhanced flow towards amino acid and protein synthesis and is also reflected in increased amounts of transcripts and/or proteins relevant to ribosome biogenesis and translation when taken in conjunction with up-regulation of several amino acid biosynthesis genes or proteins.

Conclusions: When taken as a whole, our study demonstrates how coordinated analysis of data from different systems biology levels can help reveal as-yet-unknown cellular pathways and completely change how we think about cellular biology.