ISSN: 2161-0681

Jornal de Patologia Clínica e Experimental

Acesso livre

Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Indexado em
  • Índice Copérnico
  • Google Scholar
  • Sherpa Romeu
  • Abra o portão J
  • Genâmica JournalSeek
  • JornalTOCs
  • Diretório de Periódicos de Ulrich
  • RefSeek
  • Universidade Hamdard
  • EBSCO AZ
  • OCLC – WorldCat
  • Publons
  • Fundação de Genebra para Educação e Pesquisa Médica
  • Euro Pub
  • ICMJE
Compartilhe esta página

Abstrato

Enhancing the Quality of Dental Radiographic Images: A Review on Panoramic and Periapical Radiograph Enhancement Techniques

Abdulbadea Altukroni, Omar Ezz El-Deen, Sadaf Jabeen, Sadaf Jabeen

Appropriate radiographic interpretation is critical for providing high-quality patient care. The radiograph’s wealth of data assists dentists in prescribing the best treatment option for their patients. Dental radiographs, particularly Ortho Pantomograms (OPGs) and periapical radiographs taken with low radiation doses, are frequently dark, low in contrast, and noisy. Image enhancement protocols are applied to radiographs to resolve these issues. However, selecting an appropriate technique is a tedious task, especially for the purpose of disease diagnosis. This study aims to survey standard image enhancement techniques for enhancing OPG and periapical radiographs. This study also investigates the potential image enhancement protocols conducted and what are the key factors involved in selecting a protocol for a certain type of dental disease. This review categorized the radiograph enhancement algorithm into three types: Contrast enhancement, frequency transforms and de noising filters, and deep learning. Extensive research has been conducted on the use of contrast enhancement and de noising filter algorithms for radiographs. The use of deep learning to enhance panoramic and periapical radiographs is still an emerging idea, and many potential results exist.