ISSN: 2157-7617

Jornal de Ciências da Terra e Mudanças Climáticas

Acesso livre

Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Indexado em
  • Índice de Fonte CAS (CASSI)
  • Índice Copérnico
  • Google Scholar
  • Sherpa Romeu
  • Acesso Online à Pesquisa no Meio Ambiente (OARE)
  • Abra o portão J
  • Genâmica JournalSeek
  • JornalTOCs
  • Diretório de Periódicos de Ulrich
  • Acesso à Pesquisa Online Global em Agricultura (AGORA)
  • Centro Internacional de Agricultura e Biociências (CABI)
  • RefSeek
  • Universidade Hamdard
  • EBSCO AZ
  • OCLC – WorldCat
  • Convocação de Proquest
  • Catálogo online SWB
  • Publons
  • Euro Pub
  • ICMJE
Compartilhe esta página

Abstrato

Enhancing the Spatial Variability of Soil Salinity Indicators by Remote Sensing Indices and Geo-Statistical Approach

Solafa Babiker, Elbasri Abulgasim and Hamid HS

Soil salinization is considered limiting factor for crop production and land management for dry land in Sudan, its spatial variation is affected by different factors of soil properties, vegetation and environment hence its interaction formulate the planning for successful sustainable agriculture in salt affected soils. This study aims to evolve the spatial prediction of soil salinity indicators by integrated remote sensing indices and geo-statistical cokriging model. Soil samples were collected from 476 square kilometer area in salt affected area, the samples were analyzed following standard procedures for electrical conductivity, sodium adsorption ratio, hydrogen ions and saturation percentage. Information of vegetation status identified by Normalized Difference Vegetation Index (NDVI) and soil salinization by Salinity index and brightness index were used and utilized for prediction of the soil parameters variability by cokriging model. It was found that the method was resulted in high accuracy based on RMSE and enhances the soil spatial variability assessment and provides significant interaction of different variables and indices in the landscape.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado.