Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.
Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores
Mendeley Collins
Data-driven machine learning (ML), which has gained recent popularity in environmental toxicology, has distanced itself from hypothesis-driven research during the past few decades. The application of ML in environmental toxicology is still in its infancy, however, due to knowledge gaps, technical challenges with data quality, interpretability issues with high-dimensional/heterogeneous/small-sample data analysis, and a lack of a thorough understanding of environmental toxicology. We evaluate the most current advancements in the literature and highlight cutting-edge toxicological investigations utilising ML in light of the aforementioned issues (such as learning and predicting toxicity in complicated biosystems and multiple-factor environmental scenarios of long-term and large-scale pollution).