Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Indexado em
  • Índice Copérnico
  • Google Scholar
  • Sherpa Romeu
  • Genâmica JournalSeek
  • SegurançaLit
  • Acesso à Pesquisa Online Global em Agricultura (AGORA)
  • Centro Internacional de Agricultura e Biociências (CABI)
  • RefSeek
  • Universidade Hamdard
  • EBSCO AZ
  • OCLC – WorldCat
  • Texto completo do CABI
  • Cabine direta
  • Publons
  • Fundação de Genebra para Educação e Pesquisa Médica
  • Euro Pub
  • ICMJE
Compartilhe esta página

Abstrato

Estimating Risk of Mortality from Cardiovascular Diseases using Negative Binomial Regression

Nikhita Charkha, Aditi Ghatge, Payal Sharma, Vahida Z Attar and Patil AB

Studies have demonstrated that exposure to moderate-to-high levels of ionizing radiations can cause most forms of cancer, leukemia, cardiovascular diseases, stroke, etc., especially at young ages. Hence, study of exposure to radiation has been the subject of intense epidemiological investigation. For experimentation purpose, we have used Hiroshima and Nagasaki atomic bomb survivor data, 1950-2003, Br Med J. 2010, 340:193. We have found this count cohort data to be over dispersed, which has led us to experiment negative binomial regression modelling on it, as it is over-dispersed in itself. We have estimated risk of cardiovascular data w.r.t. dose-category of radiation. As per our model, we have found that doses above 1.25 Gy are associated with an elevated risk of cardiovascular diseases, but the degree of risk at lower doses is unclear.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado.