ISSN: 2155-6199

Jornal de Biorremediação e Biodegradação

Acesso livre

Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Indexado em
  • Índice de Fonte CAS (CASSI)
  • Índice Copérnico
  • Google Scholar
  • Sherpa Romeu
  • Abra o portão J
  • Genâmica JournalSeek
  • Chaves Acadêmicas
  • JornalTOCs
  • PesquisaBíblia
  • Infraestrutura Nacional de Conhecimento da China (CNKI)
  • Diretório de Periódicos de Ulrich
  • Acesso à Pesquisa Online Global em Agricultura (AGORA)
  • RefSeek
  • Universidade Hamdard
  • EBSCO AZ
  • OCLC – WorldCat
  • Catálogo online SWB
  • Publons
  • Fundação de Genebra para Educação e Pesquisa Médica
  • MIAR
  • ICMJE
Compartilhe esta página

Abstrato

"Extraction of Nanocellulose from Banana Rachis (Agro-waste) and Preparation of Nanoellulose-Clay Nanofilter for the Industrial Wastewater Purification "

MD. Mahmudur Rahman and Mohd Maniruzzaman

Industrial dye wastes represent one of the most problematic groups of pollutants because they can be easily identified by the human naked eye and are not easily biodegradable. This research article highlights some recent development of Nanocellulose-Clay Nanofilter (NCCNF) in water treatment technologies. Nanocellulose (NC) was extracted for this research work from banana tree rachis fiber (Ebelmuschus esculentus L). Firstly, obtained raw fibers from banana rachis were treated with soap solution and benzene-alcohol (1:2) mixture then alkali wash with 17.5% NaOH solution and finally, bleaching as well as 60% sulphuric acid (H2SO4) hydrolysis was carried out on it successively. By this way NC was extracted successfully from raw rachis fiber. On the other hand, collected white clay treated with ethylene diamine (5%). In this work, we described briefly how NC was produced and its peripheral surfaces were activated for high adsorption. The anti-fouling properties of ‘NC-Clay’ based nano-filters will be also highlighted. However, NC-Clay Nanofilter (NCCNF) was prepared by solution casting method. And the samples i,e RF, ATF, BF, NC and NCCNF were characterized by Fourier transforms infrared spectroscopy (FTIR), Thermo gravimetric analysis (TGA), X-ray diffraction (X-RD), Scanning electron microscopy (SEM) analysis. Analysis data supports this bio nanofilter is highly crystalline, thermally stable, have good surface morphology, and also have strong composite forming capacity as well as biodegradable. On the other hand waste water containing heavy metal solutions were also characterized by UV-Visible and AAS techniques.