ISSN: 2157-7617

Jornal de Ciências da Terra e Mudanças Climáticas

Acesso livre

Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Indexado em
  • Índice de Fonte CAS (CASSI)
  • Índice Copérnico
  • Google Scholar
  • Sherpa Romeu
  • Acesso Online à Pesquisa no Meio Ambiente (OARE)
  • Abra o portão J
  • Genâmica JournalSeek
  • JornalTOCs
  • Diretório de Periódicos de Ulrich
  • Acesso à Pesquisa Online Global em Agricultura (AGORA)
  • Centro Internacional de Agricultura e Biociências (CABI)
  • RefSeek
  • Universidade Hamdard
  • EBSCO AZ
  • OCLC – WorldCat
  • Convocação de Proquest
  • Catálogo online SWB
  • Publons
  • Euro Pub
  • ICMJE
Compartilhe esta página

Abstrato

Identifying Long-Memory Trends in Pre-Seismic MHz Disturbances through Support Vector Machines

Cantzos D, Nikolopoulos D, Petraki E, Nomicos C, Yannakopoulos PH and Kottou S

In this paper, a novel algorithm is introduced for the analysis of long-memory patterns hidden in electromagnetic (EM) readings prior to earthquakes. The algorithm builds upon previous work on long-memory detection in EM measurements by fusing Support Vector Machine (SVM) classifiers with well-deployed power law fit tests and Rescaled-Range (R/S) time-series variability methods. To apply the algorithm, fractal power law in the wavelet domain is assessed so as to identify fractional Brownian motion (fBm) segments of continuously monitored pre-earthquake EM activity. The selected segments are then further processed through R/S Analysis in order to further refine the detection of prominent fBm behaviour. The combined output of the two methods is used to train a SVM classifier which is subsequently employed to verify similar fBm states in existing EM data and to allow for rapid fBm detection in large data sequences of unprocessed or newly incoming EM readings. The SVM classifier is added in a modular fashion, on top of pre-earthquake monitoring algorithms, and can be trained with a small fraction of a huge available dataset of EM readings. Three earthquake events in Greece, corresponding to different time occurrences and geographic locations, were investigated. For each of the three earthquakes, data collected by a nearby EM measurement station one month prior to the peak event were analysed by the proposed method. The results yielded an overall accuracy rate of at least 90% for the detection of specific, prominent fBm segments despite the fact that the fBm profile in the three investigated earthquake sequences was very different.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado.