ISSN: 2157-7617

Jornal de Ciências da Terra e Mudanças Climáticas

Acesso livre

Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Indexado em
  • Índice de Fonte CAS (CASSI)
  • Índice Copérnico
  • Google Scholar
  • Sherpa Romeu
  • Acesso Online à Pesquisa no Meio Ambiente (OARE)
  • Abra o portão J
  • Genâmica JournalSeek
  • JornalTOCs
  • Diretório de Periódicos de Ulrich
  • Acesso à Pesquisa Online Global em Agricultura (AGORA)
  • Centro Internacional de Agricultura e Biociências (CABI)
  • RefSeek
  • Universidade Hamdard
  • EBSCO AZ
  • OCLC – WorldCat
  • Convocação de Proquest
  • Catálogo online SWB
  • Publons
  • Euro Pub
  • ICMJE
Compartilhe esta página

Abstrato

Improving Coastal Vulnerability Index of the Nile Delta Coastal Zone, Egypt

Mamdouh M El-Hattab

The impact of an atmospheric warming and sea levels 30-70 cm higher than at present on the coastal lowlands of the Nile Delta during the next 50 to 100 years will depends not only on the level of population and economic activities, but also on the degree of coastal development during the next 2-3 decades. The rise in sea level threatens Egypt's long coastal stretch on the Mediterranean Sea with potential damages to, not only the tourism industry, a major contributor to the gross domestic product (GDP), but also to the entire ecosystem. Predicted socioeconomic implications due to human migration, land loss, and soil salinity cause significant concerns. Egypt is facing these challenges responsibly and taking proactive measures to protect its future generations from serious threats, which will increase in the absence of actions taken today. This paper aim to identify the most vulnerable area to sea level rise along the northern Mediterranean coast of Nile Delta. About of 300 km of the coastline was evaluated for seventeen LANDSAT images used. In this paper all available spatial factors (ten factors): geology, geomorphology, topography (elevation above mean sea level), slope, erosion/accretion patterns (shoreline change), mean sea level rise, and coastal protection were incorporate and ranked to develop an Improved coastal vulnerability index (ICVI). That ICVI was developed and used to assess the vulnerability of the coastline of the Nile Delta of Egypt to expected future sea level rise. The produced index was classified into four levels of vulnerability: low, moderate, high, and very high. About 29.64% of 300.8 km of mapped shoreline classified as very high in vulnerability, whereas 2.77% is highly vulnerable, 41.56% is at moderate vulnerability, 3.2% classified as low vulnerability, and 22.84% is a very low vulnerability. Vulnerable hotspots are located mainly along most of Nile Delta coast, southeastern parts of Abu Qir, and southwestern parts of Alexandria city. The remaining coastal areas classified as low to moderately vulnerable (like Alexandria, Rosetta, and New Damietta Cities). According to results obtained, a priority action plan for the Mediterranean coastal zone in Egypt could be modified.