Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Abstrato

Leakage and Diffusion Behaviour of a Buried Pipeline of Hydrogen-Blended Natural Gas

Jian Zhu

Buried Channels are one system of conservation transfer for extensively used feasts similar as natural gas and hydrogen. The safety of these channels is of great significance because of the implicit leakage pitfalls posed by the ignitable gas and the special parcels of the hydrogen admixture. Estimating the leakage geste and quantifying the prolixity range outside the channel are important but grueling   pretensions due to the hydrogen admixture and presence of soil. This study provides essential information about the prolixity geste and attention distribution of underground hydrogen and natural gas admixture leakages. Thus, a large- scale experimental system was developed to pretend high- pressure leaks of hydrogen admixture natural gas from small holes in three different directions from a channel buried in soil. The prolixity of hydrogen- unravel natural gas in soil was experimentally measured under different conditions, similar as different hydrogen admixture rates, release pressures, and leakage directions. The experimental results vindicated the connection of the gas leakage mass inflow model, with an error of6.85. When a larger proportion of a single element was present in the hydrogen- unravel natural gas, the leakage pressure showed a lesser prolixity range. In addition, the prolixity range of hydrogen- unravel natural gas in the leakage direction was larger at 3o'clock than that at 12o'clock. The hydrogen mix carried methane and diffused, which docked the methane achromatism time. Also, a quantitative relationship between the  attention of hydrogen-  unravel natural gas and the  prolixity distance over which the hydrogen-  unravel natural gas reached the lower limit of the explosion was  attained by quantitative analysis of the experimental data.