ISSN: 2155-6199

Jornal de Biorremediação e Biodegradação

Acesso livre

Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Indexado em
  • Índice de Fonte CAS (CASSI)
  • Índice Copérnico
  • Google Scholar
  • Sherpa Romeu
  • Abra o portão J
  • Genâmica JournalSeek
  • Chaves Acadêmicas
  • JornalTOCs
  • PesquisaBíblia
  • Infraestrutura Nacional de Conhecimento da China (CNKI)
  • Diretório de Periódicos de Ulrich
  • Acesso à Pesquisa Online Global em Agricultura (AGORA)
  • RefSeek
  • Universidade Hamdard
  • EBSCO AZ
  • OCLC – WorldCat
  • Catálogo online SWB
  • Publons
  • Fundação de Genebra para Educação e Pesquisa Médica
  • MIAR
  • ICMJE
Compartilhe esta página

Abstrato

Molecular Assessment of Microbial Species Involved in the Biodegradation of Crude Oil in Saline Niger Delta Sediments Using Bioreactors

Chioma Blaise Chikere, Chinedu Christopher Obieze and Phillip Okerentugba

Purpose: At elevated salinities conventional microbiological processes are not very effective, therefore clean up of contaminants using bioremediation strategy will involve the use of halophilic and halo-tolerant bacterial species. This research therefore aimed at isolating and identifying potential halophilic and halo-tolerant bacterial species capable of hydrocarbon degradation during bioreactor based treatment with exogenous nutrients. Methods: The diversity of indigenous bacterial species with potential to degrade hydrocarbons was investigated using both culture-dependent and independent techniques. Bioremediation of hydrocarbon contaminated saline sediments was carried out using seven 2.5 liter bioslurry bioreactors operated over a 64-day period. Physicochemical parameters monitored were pH, nitrate, phosphate, total petroleum hydrocarbon (TPH), polycyclic aromatic hydrocarbon (PAH), temperature, salinity, and total organic carbon (%TOC). Results: The baseline TPH, PAH and pH of the sediments were 19 ppm, 3.1 ppm and 7.0 respectively. The baseline salinity of the sediment was 10% thus the sediment was adjudged moderately saline. TPH ranged from 97 ppm-105 ppm on day zero and decreased to an average of 5.62 ppm on day 64, while PAH ranged from 56 ppm-61 ppm on day zero and decreased to an average of 4.02 ppm on day 64. The bacterial species identified as potential hydrocarbon degraders includes Halomonas lutea, Achromobacter spp, Aquitalea magnusonii, Bacillus sp, Sphingobacterium sp, Shewanella sp, Brevundimonas naejangsanensis, Pseudomonas pseudoalcaligenes, Pseudomonas aeruginosa, unidentified bacterium BH23 and Gordonia sp. The genus Pseudomonas formed majority of the isolates successfully sequenced and exhibited similarity values ranging from 91% to 100% with sequences deposited in GenBank. A combination of both molecular and culture based technique allowed the identification to species level of twelve isolates. One isolate could not be identified while the remaining isolates were identified to their generic level. Treatment BCD recorded highest total culturable heterotrophic bacteria (TCHB) count (7.1 × 108 cfu/g) and total culturable hydrocarbon utilizing bacteria (TCHUB) count (6.7 × 108 cfu/g). There was a significant difference at P<0.05 in TCHUB bacteria counts between the unamended bioreactor slurries and those amended with organic and inorganic nutrients. There were also significant differences in TCHUB counts when the bioaugumented slurry was compared with those amended with NPK, Urea and cow dung using one way ANOVA and Tukey’s multiple comparison tests. Conclusion: This study revealed potentially novel bacterial species and previously described hydrocarbon degrading bacterial species that can be characterized further to determine their role in hydrocarbon degradation as well as their salt tolerance level prior to application in bioremediation of saline environments.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado.