Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Abstrato

Personalised Dosing of Hyperthermia

Gyula Peter Szigeti, Oliver Szasz and Gabriella Hegyi

Objective: Our objective is to show the superiority of the membrane selection and connected energy dose fixed via personal sensing.

Method: Hyperthermia in oncology involves heating malignant cells and causing thermal damage in an attempt to destroy them. This could be immediate (necrotic) cell-distortion and ignite natural cell elimination, like apoptosis or autophagy.

Two concepts determine the dose of hyperthermia: (1) isothermal tumour heating, homogeneous tumour temperature, which is used for necrosis based cumulative equivalent minutes (CEM), and (2) inhomogeneous heating of the tumour following the heterogeneity of the lesion itself. The personalized dosing used by oncothermia is heterogenic, it selects the membrane rafts of malignant cells that sense temperature on a cellular level targeting the nano-clusters of transmembrane proteins. The method uses the standard specific energy dosing controlled by personal sensing of the treated patient maintaining homeostatic control through gradual step-up heating process.

Results: The nano excitation is thermal (fits to Arrhenius plot), and acts directly on the membrane of malignant cells. The homeostatic physiology reactions do not suppress the effective hyperthermia action with this heating. The stress reactions could be more regulated, the vasocontraction and vasodilatation effects roughly compensate each other. This allows a clear measurability of the dose of the treatment: instead of the temperature based cumulative equivalent minutes (CEM) it uses absorbed energy controlled by the RF-circuit. Due to the small mass of targets the applied power is low, the energy-sink surface cooling is fixed to homeostasis ensuring the accuracy of the energydose and improving the safety of the hyperthermia method.

Conclusion: The nanoselection of malignant cells via oncothermia allows us to return to the dosing “gold standard,” which is also applied in radiotherapy. This energy-based dose is personalised with accurate step-up heating taking the wash-out time and the personal sensing of the patient into account.