Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Indexado em
  • Índice Copérnico
  • Google Scholar
  • Sherpa Romeu
  • Abra o portão J
  • Genâmica JournalSeek
  • Infraestrutura Nacional de Conhecimento da China (CNKI)
  • Biblioteca de Periódicos Eletrônicos
  • RefSeek
  • Universidade Hamdard
  • EBSCO AZ
  • OCLC – WorldCat
  • Catálogo online SWB
  • Biblioteca Virtual de Biologia (vifabio)
  • Publons
  • Fundação de Genebra para Educação e Pesquisa Médica
  • Euro Pub
  • ICMJE
Compartilhe esta página

Abstrato

Predicting Therapeutic Results of Interferon Based Treatment by Modeling the First Week Viral Kinetics in Patients with Chronic Hepatitis C

Chun-Hsiang Wang, Ruey-Chang Lin, Lein-Ray Mo, Kuo-Kuan Chang, Jen-Juan Kuo

Background: The present study aimed to develop an optimal model predictive of the treatment response one week after initiating antiviral therapy.

Patients and Methods: In all, 166 patients completed the treatment and were followed up for six months.

Results: A viral response was achieved in 14 (8.4%) genotype 1 (G1) and 32 (19.3%) non-genotype 1 (G0) patients at week one after initiation of therapy and 45 (27.1%) G1 and 90 (54.2%) G0 patients at week four. A sustained viral response (SVR) was achieved in 50 (30.1%) G1 and 83 (50.0%) G0 patients, in 13 (29.5%) G1 and 31 (70.5%) G0 patients whose antiviral response was achieved at one week, and in 37 G1 (32.2%) and 78 G0 (67.8%) patients whose antiviral response was achieved at four weeks. The HCV viral kinetic parameter π (i.e., 1: α, α was defined as the area under the line y [viral load]=– a[x{time}] between week 0 and week 1) was found to be the best performing test for predicting SVR (p<0.0001). Regression analysis identified π as the only independent predictor of SVR (p=0.043).

Conclusions: The use of bio-mathematical models of HCV kinetics can reliably predict SVR one week after starting therapy.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado.