ISSN: 2329-9053

Jornal de Farmacêutica Molecular e Pesquisa de Processos Orgânicos

Acesso livre

Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Abstrato

Prediction of environmental indicators in land leveling using non- natural intelligence techniques

IshamAlzoub

Land leveling is one of the most important steps in soil preparation for agricultural and other purposes. . New techniques based on artificial intelligence, such as Artificial Neural Network, integrating Artificial Neural Network and Imperialist Competitive Algorithm (ICA-ANN), or Genetic Algorithms (GA-ANN), or Particle Swarm Optimization (PSO-ANN) have been employed for developing predictive models to estimate the energy related parameters and the results were compared to SPSS and Sensitivity Analysis  results. In this study, several soil properties such as cut/fill volume, compressibility factor, specific gravity, moisture content, slope of the area, sand percent, and swelling index were measured and their effects on energy consumption were investigated.Totally 90 samples were collected from 3 land areas by grid size of 20m×20m. The aim of this work was to develop predictive models based on artificial intelligence techniques to predict the environmental indicators of land leveling . Results of sensitivity analysis illustrated thatonly three parameters consist of soil density, soil compressibility,andsoil cut/fillmeaningful effects

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado.