ISSN: 2161-0711

Medicina Comunitária e Educação em Saúde

Acesso livre

Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Abstrato

The Enhancement of Background Radiation as A Result of Using Natural Building Materials

Al-Kazwini AT, Said AJ, Attaelmanan AJ

People living and working in buildings constructed from natural materials such as sandstone, concrete, calcite, gypsum, marble and granite are exposed to a surplus of background radiation from naturally occurring radioactive materials. The above materials contain naturally occurring radioactive elements such as potassium, radium, uranium, thorium and their progeny, which enhance the contribution to the ambient background radiation levels, consequently increasing the health risk. The unstable and hazardous radionuclides contribute remarkably to the level of background radiation in houses, schools and many other national institute buildings.
Radiation levels at various locations were measured on the main campus of the German Jordanian University (GJU), in the area of Mushaqar, South Amman, Jordan. Thermal Lithium Dosimeters (TLD) were placed in 22 offices in different buildings. Subsequently, the radiation doses from the TLDs were estimated, then, the weekly averages and annual doses were calculated. The results indicated that the total background radiation levels ranged between 2 mSv/year to 10.58 mSv/year with an average of 4.62 mSv/year. This average is higher than the background radiation averages for the city of Amman, the Royal Scientific Society (RSS) buildings and the worldwide average dose of 2.4 mSv/year for a human being (ICRP 1990). Furthermore, radiation levels at GJU were higher in the ground floor offices, which is consistent with natural background radiation behaviour in a multi-storey building.