Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.

Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores

Indexado em
  • Índice Copérnico
  • Google Scholar
  • Sherpa Romeu
  • Abra o portão J
  • Genâmica JournalSeek
  • Infraestrutura Nacional de Conhecimento da China (CNKI)
  • Biblioteca de Periódicos Eletrônicos
  • RefSeek
  • Universidade Hamdard
  • EBSCO AZ
  • OCLC – WorldCat
  • Catálogo online SWB
  • Biblioteca Virtual de Biologia (vifabio)
  • Publons
  • Fundação de Genebra para Educação e Pesquisa Médica
  • Euro Pub
  • ICMJE
Compartilhe esta página

Abstrato

Trans-Lymphatic Metastasis in Peritoneal Dissemination

Yutaka Yonemura*, Emel Canbay, Yan Liu, Ayman Elnemr, Yoshio Endo, Masahiro Miura, Haruaki Ishibashi, Yoshiaki Mizumoto and Masamitsu Hirano

Mechanism of the formation of peritoneal metastasis (PM) through lymphatic vessels was studied. Materials and methods: Parietal peritoneum was divided into 8 regions, and specimens of each zone were removed from patients with PM. The specimens were stained with enzyme histochemical staining for alkaline phoshatase (ALPase) and 5-Nase activity, and with immunohistochemical staining with D2-40. Surface of the peritoneum and subperitoneal tissue were observed by a scanning electron mcirosopy. Results: Well-developed lymphatic lacunae were found in the shallow submesothelial layer of 7 regions except for the anterior abdominal wall. Lymphatic vessels were found in the deep submesothelial layer up to 200 micrometer from the peritoneal surface. The mesothelial stomata directly connect with the submesothelial lymphatic vessels through holes of the macula cribrifolmis. Migration of cancer cells through stoma was found, and cancer cells were detected in the submesothelial lymphatic lacunae. Lymphatic vessels are not found in the center of established PM, but were found in the adjacent normal tissue. In the subperitoneal tissue outside the PM, morphological findings suggesting lymphangiogenesis designated as cystic Lymphatic Island, ladder formation, budding, and extension of lymphatic vessels were found. Conclusion: The triplet structure consisting of mesothelial stomata, holes on macula cribriformis and submesothelial lymphatic lacunae is essential for the migration of peritoneal free cancer cells into the submesothelial lymphatic lacunae. The rout of the formation of PM through peritoneal lymphatic vessels was named as translymphatic metastasis.