Nosso grupo organiza mais de 3.000 Séries de conferências Eventos todos os anos nos EUA, Europa e outros países. Ásia com o apoio de mais 1.000 Sociedades e publica mais de 700 Acesso aberto Periódicos que contém mais de 50.000 personalidades eminentes, cientistas de renome como membros do conselho editorial.
Periódicos de acesso aberto ganhando mais leitores e citações
700 periódicos e 15 milhões de leitores Cada periódico está obtendo mais de 25.000 leitores
Roukis TS
Failed arthroplasty procedures can increase the susceptibility of a patient to complications. Salvage procedures require new approaches that are able to improve fusion speed and quality. A recently developed cellular bone allograft, ViviGen® (V-CBM), provides the osteoconductive, osteoinductive, and osteogenic properties needed for rapid and high-quality bone fusion. This cellular bone allograft contains a demineralized bone matrix component in addition to a viable cortico-cancellous bone matrix with osteoblastic lineage-committed bone cells. However, there is little clinical evidence for the use of V-CBM in ankle arthrodesis procedures. This detailed case study presents an outcome of using V-CBM to salvage a failed agility total ankle replacement with talar component subsidence and degenerative joint disease in the subtalar joint on the right ankle and hindfoot. Radiographs showed the femoral head allograft, in combination with V-CBM, was fusing to the native talus and calcaneus by 12 weeks and to native the tibia by six months. The patient was weight bearing at 5 months post-operative, and the significant preoperative pain diminished to a minimal amount. The patient remained completely satisfied with procedure as of the last followup at 23 months post-operative. V-CBM enabled a successful salvage of failed ankle arthroplasty that had been complicated by two failed previous failed replacement surgeries. While not generalizable, this may be the first published case of a cellular bone allograft used in the salvage of a failed ankle arthroplasty. These results support continued research into the clinical use of V-CBM for arthrodesis procedures in the foot and ankle.